2 resultados para Acute Exercise

em Repository Napier


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is the biggest killer of people in western civilisation. Age is a significant risk factor for the development for CVD, and treatments and therapies to address this increased risk are crucial to quality of life and longevity. Exercise is one such intervention which has been shown to reduce CVD risk. Age is also associated with endothelial dysfunction, reduced angiogenic capabilities, and reduced ability to repair the vessel wall. Circulating angiogenic cells (CACs) are a subset of circulating cells which assist in the repair and growth of the vasculature and in the maintenance of endothelial function. Reductions in these cells are observed in those with vascular disease compared to age-matched healthy controls. Exercise may reduce CVD risk by improvements in number and/or function of these CACs. Data was collected from human volunteers of various ages, cardiorespiratory fitness (CRF) levels and latent viral infection history status to investigate the effects of chronological age, CRF, viral serology and other lifestyle factors, such as sedentary behaviours and exercise on CACs. The levels of CACs in these volunteers were measured using four colour flow cytometry using various monoclonal antibodies specific to cell surface markers that are used to identify specific subsets of these CACs. In addition, the response to acute exercise of a specific subset of these CACs, termed ‘angiogenic T-cells’ (TANG) were investigated, in a group of well-trained males aged 20-40 years, using a strenuous submaximal exercise bout. Advancing age was associated with a decline in various subsets of CACs, including bone marrow-derived CD34+ progenitors, putative endothelial progenitor cells (EPCs) and also TANG cells. Individuals with a higher CRF were more likely to have higher circulating numbers of TANG cells, particularly in the CD4+ subset. CRF did not appear to modulate CD34+ progenitors or EPC subsets. Increasing sitting time was associated with reduction in TANG cells, but after correcting for the effects of fitness, sitting time no longer negatively affected the circulating number of these cells. Acute exercise was a powerful stimulus for increasing the number of TANG cells (140% increase), potentially through an SDF-1:CXCR4-dependent mechanism, but more studies are required to investigate this. Latent CMV infection was associated with higher number of TANG cells (CD8+), but only in 18-40 year old individuals, and not in an older age group (41-65 year old). The significance of this has yet to be understood. In conclusion, advancing age may contribute to increased CVD risk partly due to the observed reductions in angiogenic cells circulating in the peripheral compartment. Maintaining a high CRF may attenuate this CVD reduction by modulating TANG cell number, but potentially not CD34+ progenitor or EPC subsets. Acute exercise may offer a short window for vascular adaptation through the mobilisation of TANG cells into the circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The aim of this study was to investigate the associations between alleles of the hypoxia-inducible factor 1A (HIF1A) C1772T polymorphism and several physiological responses to hypoxia, including the hypoxic ventilatory response (HVR), and serum erythropoietin (EPO), arterial oxygen saturation (Sao2), and acute mountain sickness (AMS) responses during 8 hours of exposure to normobaric hypoxia. Methods A total of 76 males participated in the study; 52 participants completed an 8-hour exposure to 12.7% oxygen, during which time Sao2, EPO concentrations, and AMS scores were measured, while 62 individuals took part in an HVR trial (in total 38 individuals completed both protocols). DNA was obtained from leukocytes, and a 346-bp fragment of the HIF1A gene containing the C1772T polymorphism was amplified using polymerase chain reaction. Fragments were sequenced to reveal individual genotypes, and the associations between HIF1A genotype and EPO, Sao2, AMS responses to hypoxia and HVR were examined. Results The magnitude of the hypoxic responses was highly variable between individuals. The increase in participants' EPO responses ranged from 89% to 388% of baseline values following hypoxia, while Sao2 values during the exposure ranged from 71% to 89%. The HVR ranged from −0.04 to +2.18 L · min−1 · Sao2%−1 among participants. No significant differences in EPO, Sao2, AMS, or HVR results were observed between the HIF1A CC genotype and the combined CT/TT genotype group. Conclusion In this study, the HIF1A C1772T polymorphism does not appear to influence EPO, Sao2, or AMS responses during acute hypoxic exposure, or the magnitude of the HVR.